Aerodynamic researchAccelerating Your Research & Development
From scanned CAD to an optimized caraerodynamic shape optimization of an electric vehicle based on adjointOptimisationFoam
This article presents the application of a complete aerodynamic shape optimization workflow, from CAD generation to gradient-based optimization, to an electric vehicle targeting the minimization of drag and, as a consequence, the reduction in electric energy consumption. The CAD files are generated by 3D scanning a real car model, the pre-processing and meshing is conducted using a user-friendly front-end of snappyHexMesh and the automated aerodynamic shape optimization is performed using adjointOptimisationFoam. The latter employs the continuous adjoint method to compute the gradient of the objective function; the software includes also the adjoint to the turbulence model equation.
Deep LearningAutomated Drone Design
Neural Concept, EPFL (École Polytechnique Fédérale de Lausanne), senseFly and AirShaper teamed up for an academic research project to apply deep learning to aerodynamics.
We connected the Neural Concept deep learning software to the AirShaper aerodynamics platform via APIs (Application Programming Interfaces). Then, the software explored the most exotic 3D shapes possible and analyzed each of those on AirShaper.
Based on those learnings, the software started seeing trends and improved its understanding of the application. Soon, it started making predictions on what could be an even better aerodynamic shape!
Sports car aerodynamicsIncreasing cornering speeds
Sports cars & race cars mainly use aerodynamics to generate downforce. This increases normal pressures on the tires, allowing them to handle more lateral forces. This results in higher cornering speeds.
The downside is that this increases friction on the ground (and thus increases required power), makes the car more dependent on the friction coefficient (lower safety), increases the loads on components (making the car heavier) and influences the ride height and aerodynamics during a race (changing its behaviour).
In this study, done in the early days of AirShaper, H. Maho started from the Aquilo Concept Car and analyzed alternative concepts for lateral force generation.
Thermo-regulation in sports 1/2Backpack ventilation design using CFD
Vaude, designer & manufacturer or sustainable outdoor clothing & gear, wanted to improve the thermal comfort of cyclists wearing a backpack.
Thermoregulation of an athlete during physical activities plays an important role especially in endurance sports such as cycling. Depending on the type and intensity level of the activity thermoregulation can affect performance and/or thermal comfort. During cycling, especially within the MTB categories, athletes often wear a backpack.
The overall goal of the study was to engineer a new backpack ventilation technology utilizing the relative headwind generated during cycling for convective heat transfer between backpack and first clothing layer.
Thermo-regulation in sports - 2/2Thermal measurements for validation
Wearing a backpack affects the microclimate (MC: temperature and humidity between skin and first clothing layer) as well as the interlayer climate (ILC: temperature and humidity between first clothing layer and backpack/mid layer) depending on the backpack sytem. In short, the comfort & performance of the rider are compromised.
Vaude has developed two new rear panel designs for cycling backpacks and evaluated those using AirShaper CFD (computational fluid dynamics) analysis. The present subject study represents a “proof of concept” comparing two new rear panel designs with a conventional full contact back and a ventilated backpack system regarding temperature and humidity related to MC and ILC.
Vehicle dynamicsCrosswind sensitivity & fuel consumption
Aerodynamics are crucial to many industries and to the transportation industry in particular. Not only are aerodynamics responsible for over half the fuel/power consumption at highway speeds, but they also greatly impact the stability of vehicles under windy conditions or travelling at high speeds. With passenger safety at stake, understanding and optimizing the aerodynamics of vehicles is crucial, whether it concerns cars, trucks or bikes. In this document, two of the most relevant cases where aerodynamics impact vehicle performance & safety are analyzed: cross wind stability & fuel consumption.
OpenFOAMSimulation of rotating elements of a quadcopter
Unmanned Aerial Vehicles (UAVs) are known for having a wide variety of appli- cations ranging from landscape surveying, industrial inspection and monitoring, to precision agriculture and aerial imaging. The extensive use of UAVs can be linked to the cost-effective solutions provided by them. Important advantages of multi- rotored vehicles compared to single rotor vehicles are the increased lifting capacity, smoother vertical flight and safety redundancy.